
ECHO Services Refactor
Design

Abstract:

In order to provide a more streamlined, maintainable, and extensible system for data acquisition (order, service, direct download) requests
invoked via Reverb, and to enable the sharing of code between Reverb and other clients (e.g. EDSC), a new top level project will be
developed. This project will provide a unified API for creating, editing, submitting, and monitoring data acquisitions. The design will take into
consideration both the Reverb New Order Workflow(NOW) and the EDSC workflow and must integrate with both workflows. Since multiple
clients will be sharing this API, we will not make any assumptions about the View or user interface (except the assumption that all clients will
use the echo_forms_plugin for option selection).

Rails Endpoints:

NOTE: the endpoints in blue below will likely be implemented in the client (Reverb or EDSC).

URL template Method Purpose

/service_requests/new POST Returns an HTML page where the user can set options for a new request containing the
catalog items passed in the POST body. This would primarily be called from the Reverb
shopping cart. In this use case, the shopping cart contents, as well as user and session
information would be rolled up into the POST body. The POST should also contain the
Reverb search criteria, for possible use in pre populating values in the service options.

/service_requests/:item_id/new GET Build a new single item request. This would be a new use case, but it may be useful to
allow a user to submit a request without going through the shopping cart.

/service_requests/submit POST Build and submit a service request. Called from the /service_requests/new page. Returns
service status URL as the location header. Request body contains items and options for
request.

/service_requests/:request_id GET Get the status of a request.

 PUT Update the status of a request.

/service_options/:item_id(.:format) GET xml: Get the option definition(s) (echo form) xml for the dataset or granule.

html: Render the option definition(s) for the dataset or granule.

If there are multiple relevant option definitions, they will all be displayed. A query param
'?num=x' can be used to specify only one

Models:

DataRequest - Base model type shared by Orders and Service Requests. Defines basic functionality and sets up the interface
which all orders and service requests will conform to.

Download -
Order - Placeholder for potentially integrating Orders and Service Requests in the future.
ServiceRequest - Common service functionality

SSWServiceRequest - There are currently no SSW services, only ESI, which is an extension of SSW, but this
model will separate the APIs and allow us to more easily integrate SSW services. Functionality which would be
shared between the APIs is defined her.

ESIServiceRequest - ESI specific functionality (that is not shared by SSW)

Data location/access:

Current and proposed location of data used by the API and how it is/will be accessed

Service Option Definition/Assignment - DEV_52_BUSINESS.SERVICE_OPTION_DEFINITION/ASSIGNMENT- Accessed via
echo-rest
Order Option Definition - DEV_52_BUSINESS.EJB_OPTION_DEF - accessed via echo-rest

1.
2.
3.

4.
5.
6.
7.

8.
9.

10.

11.
a.

i.
ii.
iii.

12.

13.

1.
2.
3.
4.
5.

6.

1.

2.
a.

3.

a.

Order Option Assignment - ?
Servicability - DEV_52_BUSINESS.SERVICE_OPTION_ASSIGNMENT
Orderability -
Service - DEV_52_REVERB.SERVICE_ORDERS - NEW SYSTEM: Tables in TBD new schema
Order - DEV_52_BUSINESS.EJB_ORDER (& EJB_PROVIDER_ORDER?)
Downloads - URLs in metadata. possibly tracked in new schema.

Use Cases:

Perform service on contents of shopping cart (existing nominal use case):

User performs search and adds catalog items (datasets and granules) to the shopping cart.
User navigates to the shopping cart and presses the "Perform Service" button.
Reverb packs up the shopping cart contents, as well as the user information, token ID, spatial/temporal query params, etc. and
performs a POST to /service_requests/new.
The user is presented with a page which mirrors the current New Order Workflow page,
The user adds any necessary User Information (name and email address) or logs in if they are not already.
The user may remove items from their order.
The user sets the service processing options, which may have been pre populated with information already (e.g. email address,
spatial/temporal subset bounds pulled from search criteria).
Once all required information is set, the "Submit" button becomes active.
The user clicks the "Submit" button which performs a POST to /service_requests/submit. The POST body contains all of the selected
catalog items, along with their option selections and user information.
The service_request controller builds one or more ServiceRequest objects (items will be split up based on shared service option
selections).
The controller will then submit each ServiceRequest

For SSWServiceRequests(Including ESIServiceRequests), the submittal will entail:
Pull parameters from the service options selections
Marshall the selected parameters into an SSW/ESI formatted request using an ERB template.
Perform a POST to the configured service endpoint.

The URL /service_requests/:request_id will be returned to Reverb. Reverb will then display this page and refresh it periodically to get
updated status.
The user can also navigate to the reverb service status page to be directed to service status URL (/service_requests/:request_id) for
any existing request.

Submit request for a single catalog item (potential new functionality):

User is on a dataset or granule search result page in Reverb.
User clicks on the 'Services Available' gear icon next to the catalog item.
User is presented with some information about available services as well as a 'Perform Service' button.
User presses the 'Perform Service' button.
Reverb packs up the selected item id, as well as the user information, token, spatial/temporal query params, etc. and performs a
POST /service_requests/:item_id/new.
Pick up the nominal use case above at step 4.

View options definition for item (potential new functionality):

DAAC Operator uploads a service option definition and assigns it to a dataset (e.g. via SDPS EGI GUI, PUMP, or ECHO web
services).
Operator navigates to /service_options/:item_id.xml and sees the ECHO forms XML for all option definitions for the specified item.

Operator can alternatively navigate to /service_options/:item_id.xml?num=x to view only one option definition if multiple
exist.

Operator navigates to /service_options/:item_id.html and is presented with an HTML page containing fully functional forms for the
specified item. This page would look similar to the existing reverb new_test_form page and would display the dynamic model output
for each form, facilitating debugging of forms.

Operator can alternatively navigate to /service_options/:item_id.html?num=x to view only one option definition if multiple
exist.

Issues:

Need to make sure we can share session information across the reverb and service endpoints. Hopefully we can accomplish this by
passing a token in the initial request.
If we replicate the New Order Workflow in the service project, but do not move Order processing into the same project yet, we will
end up with duplicate code. If we cant find a way to share this code. We at least need to put some thought to making sure it gets

cleaned up if/when orders move to this new project as well.

Appendix

Existing Reverb Service Endpoints

Relevant endpoints from the existing implementation are shown below for reference.

Service Entries (i.e. service implementations)

Name Method URL template Controller method Purpose Keep?

service_entries GET /service_entries(.:format) service_entries#index List service entries

Service Orders

Name Method URL template Controller method

submit_service_order POST /service_orders/:id/submit(.:format) service_orders#submit

review_service_order GET /service_orders/:id/review(.:format) service_orders#review

receipt_service_order GET /service_orders/:id/receipt(.:format) service_orders#receipt

service_order_validate_option_selections GET /service_orders/:service_order_id/validate_option_selections(.:format) service_orders#validate_option_selections

search_service_orders GET /service_orders/search(.:format) service_orders#search

metrics_service_orders GET /service_orders/metrics(.:format) service_orders#metrics

service_orders GET /service_orders(.:format) service_orders#index

 POST /service_orders(.:format) service_orders#create

edit_service_order GET /service_orders/:id/edit(.:format) service_orders#edit

service_order GET /service_orders/:id(.:format) service_orders#show

 DELETE /service_orders/:id(.:format) service_orders#destroy

service_order_service_order_item PUT /service_orders/:service_order_id/service_order_items/:id(.:format) service_order_items#update

Test Endpoints

Name Method URL template Controller method Purpose Keep?

esi_endpoint_index GET /esi_endpoint(.:format) esi_endpoint#index Display test page (broken)

 POST /esi_endpoint(.:format) esi_endpoint#create Perform test service request

esi_endpoint GET /esi_endpoint/:id(.:format) esi_endpoint#show Return status of test service request

 DELETE /esi_endpoint/:id(.:format) esi_endpoint#destroy Cancel test service request

esi_requests GET /esi_requests(.:format) esi_requests#index Placeholder (401)

esi_request GET /esi_requests/:id(.:format) esi_requests#show ?

ssw_endpoint_index GET /ssw_endpoint(.:format) ssw_endpoint#index Display test page(broken)

 POST /ssw_endpoint(.:format) ssw_endpoint#create Perform test service request

ssw_endpoint GET /ssw_endpoint/:id(.:format) ssw_endpoint#show Return status of test service request

 DELETE /ssw_endpoint/:id(.:format) ssw_endpoint#destroy Cancel test service request

Orders

Name Method URL template Controller method Purpose Workflow?

orders GET /orders(.:format) orders#index List orders
for current
user

 POST /orders(.:format) orders#create Creates an
order form
the
shopping
cart

search_orders GET /orders/search(.:format) orders#search Find order
by ID

new_order GET /orders/new(.:format) orders#new Set order
Options
(NOW)

NOW

edit_order GET /orders/:id/edit(.:format) orders#edit legacy?

order GET /orders/:id(.:format) orders#show Get order
information

 DELETE /orders/:id(.:format) orders#destroy Cancel
order

show_granules_order GET /orders/:id/show_granules(.:format) orders#show_granules List
granules in
specified
dataset
which are
in the cart.

':id' is
thrown
away.
Should we
move this
under
cart?

? POST /orders/:id/submit(.:format) orders#submit Submit the
order. In
NOW, this
includes
creating
the order.

both

submit_order GET /orders/:id/submit(.:format) orders#view_order_submission View order
receipt

NOW

order_validate_option_selections GET /orders/:order_id/validate_option_selections(.:format) orders#validate_option_selections Verify all
options are
set

remove_selected_order POST /orders/:id/remove_selected(.:format) orders#remove_selected remove
selected
order
items

remove_all_order POST /orders/:id/remove_all(.:format) orders#remove_all remove all
order
items

order_order_items POST /orders/:order_id/order_items(.:format) order_items#create Add order
item

legacy

 DELETE /orders/:order_id/order_items(.:format) order_items#destroy Remove
order item

legacy

order_order_item PUT /orders/:order_id/order_items/:id(.:format) order_items#update Update
order item

legacy

	ECHO Services Refactor

